个人简介
研究方向
承担项目
代表性学术成果
学生培养
崔有江

崔有江,特聘副研究员,学科骨干。主要从事热电/光伏智能材料的结构优化及安全性设计、蜂窝基力学超结构的多场耦合断裂损伤评估等方面的工作。在International Journal of Solids and StructuresMechanics of MaterialsComposite StructuresInternational Journal of Mechanical SciencesEnergy Conversion and ManagementInternational Journal of Heat and Mass TransferSCI期刊发表学术论文24篇,H因子10,并担任EnergySustainable Energy Technologies and AssessmentsSCI期刊审稿人。主持国家自然科学基-青年科学基金项目1广东省海上风电联合基金-面上项目1,参与国家自然科学基-面上项目3、深圳市科技计划-基础研究重点项目1

教育经历:

2017.9-2020.12 哈尔滨工业大学(深圳) 力学 工学

2015.9-2017.7 哈尔滨工业大学(深圳) 力学 工学

2011.9-2015.7 石家庄铁道大学 工程力学 工学学士

工作经历:

2023-3至今 东莞理工学院材料学院交叉科学研究中心 特聘副研究员

2021.2-2023.2 哈尔滨工业大学(深圳) 材料科学与工程学院 博士后


热电材料/器件断裂损伤及其能量转换性能

光伏-热电复合发电器件的能量转换特征及安全性设计

蜂窝基力学超结构的多场耦合断裂损伤评估


1. 国家自然科学基金-青年科学基金项目:12102104,高柔韧高强度负泊松比热电器件的构筑机理及热--力多场调控2022.01-2024.1230万,主持。

2. 广东省海上风电联合基金-面上项目2022A1515240072,轻质高强度负泊松比蜂窝夹芯海上升压站的结构设计与性能优化,2022.10.01-2025.09.3030万,主持。


[1] B.L. Wang(导师), Y.J. Cui (*). Transient interlaminar thermal stress in multi-layered thermoelectric materials. Applied Thermal Engineering, 2017, 119: 207-214.

[2] Y.J. Cui, B.L. Wang (*), P. Wang. Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions. International Journal of Mechanical Sciences, 2018,149: 393-401.

[3] Y.J. Cui, K.F. Wang, B.L. Wang (*). Fracture mechanics analysis of delamination in a thermoelectric pn-junction sandwiched by an insulating layer. Applied Mathematics and Mechanics - English Edition(全国第二届热应力大会推荐发表), 2018, 39(10): 1477-1484.

[4] Y.J. Cui, K.F. Wang, B.L. Wang (*), P. Wang. Analysis of thermally induced delamination of thermoelectric thin film/substrate system. International Journal of Fracture, 2018, 214(2): 201-208.

[5] Y.J. Cui, B.L. Wang (*), K.F. Wang, J.E. Li. Fracture mechanics analysis of delamination buckling of a porous ceramics foam coating from elastic substrates. Ceramics International, 2018, 44(15): 17986-17991.

[6] Y.J. Cui, K.F. B.L Wang (*), Wang, L. Zheng (*). Effect of buckling on the cooling performance of free-standing planar thermoelectric coolers. Journal of Thermal Stresses, 2019, 42(8): 962-975.

[7] Y.J. Cui, B.L. Wang (*), K.F. Wang. Thermally induced vibration and strength failure analysis of thermoelectric generators. Applied Thermal Engineering, 2019, 160: 113991.

[8] Y.J. Cui, K.F. Wang (*), B.L. Wang (*), J.E. Li (*), J.Y. Zhou. A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties. Composite Structures, 2019, 229: 111484.

[9] Y.J. Cui, B.L. Wang (*), K.F. Wang, L. Zheng (*). Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting. International Journal of Heat and Mass Transfer, 2019, 137: 979-989.

[10] Y.J. Cui, K.F. Wang (*), J.E. Li (*), B.L. Wang. Time-dependent power output and elastic/plastic fracture analyses of porous thermoelectric ceramics for generators. Ceramics International, 2020, 46(6): 8264-8273.

[11] Y.J. Cui, B.L. Wang (*), J.E. Li (*), K.F. Wang. Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system. Energy Conversion and Management, 2020, 211: 112744.

[12] Y.J. Cui, J.E. Li (*), B.L. Wang, K.F. Wang (*). Thermally induced delamination and buckling of a ceramic coating with temperature-dependent material properties form porous substrate at high temperatures. Acta Mechanica, 2020, 231(6): 2143-2154.

[13] Y.J. Cui, K.F. Wang (*), L. Zheng (*), B.L. Wang, C.W. Zhang. Theoretical model of fatigue crack growth of a thermoelectric pn-junction bonded to an elastic substrate. Mechanics of Materials, 2020, 151: 103623.

[14] Y.J. Cui, B.L. Wang (*), K.F. Wang. Energy conversion performance optimization and strength evaluation of a wearable thermoelectric generator made of a thermoelectric layer on a flexible substrate. Energy, 2021, 229: 120694.

[15] Y.J. Cui, B.L. Wang (*), K.F. Wang, G.G. Wang (*), A.B. Zhang. An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device. Renewable Energy, 2022, 182: 923-933.

[16] Y.J. Cui, B.L. Wang (*), K.F. Wang (*), G.G. Wang. An analytical model to evaluate influence of negative Poisson’s ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator. International Journal of Solids and Structures, 2022, 258: 112000.

[17] Y. Liu, Y.J. Cui (*), B.L. Wang (*), J. Yang. Coupled thermo-electric-mechanical modeling of hybrid thermoelectric-piezoelectric energy harvester. Sustainable Energy Technologies and Assessments, 2022, 54: 102845.

[18] Y.J. Cui, C. Liu, K.F. Wang (*), B.L. Wang, Y. Liu (*). Effect of negative Poisson’s ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators. Engineering Fracture Mechanics, 2023, 281: 109142.

[19] C. Liu, Y.J. Cui (*), K.F. Wang, B.L. Wang. Interlaminar mechanical performance of a multi-layered photovoltaic-thermoelectric hybrid device. Applied Mathematical Modelling, 2023, 122: 242-264.

        [20] C. Liu, Y.J. Cui (*), K.F. Wang (*), B.L. Wang. Bending strength evaluation and power generation performance optimization of a curved photovoltaic-thermoelectric hybrid device. Composite Structure s, 2023, https://doi.org/10.1016/j.compstruct.2023.117297.


欢迎热爱科研的同学加入,共同做点有趣的工作。

关闭